Matemática discreta Ejemplos

Hallar la inversa p(x)=750x^2+15000x
Paso 1
Escribe como una ecuación.
Paso 2
Intercambia las variables.
Paso 3
Resuelve
Toca para ver más pasos...
Paso 3.1
Reescribe la ecuación como .
Paso 3.2
Resta de ambos lados de la ecuación.
Paso 3.3
Usa la fórmula cuadrática para obtener las soluciones.
Paso 3.4
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 3.5
Simplifica.
Toca para ver más pasos...
Paso 3.5.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.5.1.1
Eleva a la potencia de .
Paso 3.5.1.2
Multiplica .
Toca para ver más pasos...
Paso 3.5.1.2.1
Multiplica por .
Paso 3.5.1.2.2
Multiplica por .
Paso 3.5.1.3
Factoriza de .
Toca para ver más pasos...
Paso 3.5.1.3.1
Factoriza de .
Paso 3.5.1.3.2
Factoriza de .
Paso 3.5.1.4
Reescribe como .
Toca para ver más pasos...
Paso 3.5.1.4.1
Factoriza de .
Paso 3.5.1.4.2
Reescribe como .
Paso 3.5.1.4.3
Agrega paréntesis.
Paso 3.5.1.5
Retira los términos de abajo del radical.
Paso 3.5.2
Multiplica por .
Paso 3.5.3
Simplifica .
Paso 3.6
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 3.6.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.6.1.1
Eleva a la potencia de .
Paso 3.6.1.2
Multiplica .
Toca para ver más pasos...
Paso 3.6.1.2.1
Multiplica por .
Paso 3.6.1.2.2
Multiplica por .
Paso 3.6.1.3
Factoriza de .
Toca para ver más pasos...
Paso 3.6.1.3.1
Factoriza de .
Paso 3.6.1.3.2
Factoriza de .
Paso 3.6.1.4
Reescribe como .
Toca para ver más pasos...
Paso 3.6.1.4.1
Factoriza de .
Paso 3.6.1.4.2
Reescribe como .
Paso 3.6.1.4.3
Agrega paréntesis.
Paso 3.6.1.5
Retira los términos de abajo del radical.
Paso 3.6.2
Multiplica por .
Paso 3.6.3
Simplifica .
Paso 3.6.4
Cambia a .
Paso 3.6.5
Reescribe como .
Paso 3.6.6
Factoriza de .
Paso 3.6.7
Factoriza de .
Paso 3.6.8
Mueve el negativo al frente de la fracción.
Paso 3.7
Simplifica la expresión para obtener el valor de la parte de .
Toca para ver más pasos...
Paso 3.7.1
Simplifica el numerador.
Toca para ver más pasos...
Paso 3.7.1.1
Eleva a la potencia de .
Paso 3.7.1.2
Multiplica .
Toca para ver más pasos...
Paso 3.7.1.2.1
Multiplica por .
Paso 3.7.1.2.2
Multiplica por .
Paso 3.7.1.3
Factoriza de .
Toca para ver más pasos...
Paso 3.7.1.3.1
Factoriza de .
Paso 3.7.1.3.2
Factoriza de .
Paso 3.7.1.4
Reescribe como .
Toca para ver más pasos...
Paso 3.7.1.4.1
Factoriza de .
Paso 3.7.1.4.2
Reescribe como .
Paso 3.7.1.4.3
Agrega paréntesis.
Paso 3.7.1.5
Retira los términos de abajo del radical.
Paso 3.7.2
Multiplica por .
Paso 3.7.3
Simplifica .
Paso 3.7.4
Cambia a .
Paso 3.7.5
Factoriza de .
Toca para ver más pasos...
Paso 3.7.5.1
Reordena y .
Paso 3.7.5.2
Reescribe como .
Paso 3.7.5.3
Factoriza de .
Paso 3.7.5.4
Factoriza de .
Paso 3.7.5.5
Reescribe como .
Paso 3.7.6
Mueve el negativo al frente de la fracción.
Paso 3.8
La respuesta final es la combinación de ambas soluciones.
Paso 4
Replace with to show the final answer.
Paso 5
Verifica si es la inversa de .
Toca para ver más pasos...
Paso 5.1
El dominio de la inversa es el rango de la función original y viceversa. Obtén el dominio y el rango de y y compáralos.
Paso 5.2
Obtén el rango de .
Toca para ver más pasos...
Paso 5.2.1
El rango es el conjunto de todos los valores válidos. Usa la gráfica para obtener el rango.
Notación de intervalo:
Paso 5.3
Obtén el dominio de .
Toca para ver más pasos...
Paso 5.3.1
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 5.3.2
Resuelve
Toca para ver más pasos...
Paso 5.3.2.1
Divide cada término en por y simplifica.
Toca para ver más pasos...
Paso 5.3.2.1.1
Divide cada término en por .
Paso 5.3.2.1.2
Simplifica el lado izquierdo.
Toca para ver más pasos...
Paso 5.3.2.1.2.1
Cancela el factor común de .
Toca para ver más pasos...
Paso 5.3.2.1.2.1.1
Cancela el factor común.
Paso 5.3.2.1.2.1.2
Divide por .
Paso 5.3.2.1.3
Simplifica el lado derecho.
Toca para ver más pasos...
Paso 5.3.2.1.3.1
Divide por .
Paso 5.3.2.2
Resta de ambos lados de la desigualdad.
Paso 5.3.3
El dominio son todos los valores de que hacen que la expresión sea definida.
Paso 5.4
Obtén el dominio de .
Toca para ver más pasos...
Paso 5.4.1
El dominio de la expresión son todos números reales, excepto cuando la expresión no está definida. En ese caso, no hay ningún número real que haga que la expresión sea indefinida.
Paso 5.5
Como el dominio de es el rango de y el rango de es el dominio de , entonces es la inversa de .
Paso 6